Betaine surfactants OBS-50 Octadecyl Benzenesulfonic Acid CAS 27177-79-3

Betaine surfactants

It is generated by the response of fatty tertiary amines and sodium chloroacetate, including cocoylpropyl betaine, dodecyl betaine, cetyl betaine, and lauroyl propyl betaine. It is milder than the first three and is presently the main surfactant in infant hair shampoo.

In 1940, the American DuPont Firm created and applied this type of compound. Like amino acid surfactants, this sort of surfactant has solid detergency and reduced irritability, and the option is weakly acidic. Animal experiments have verified that this type of substance is much less harmful. It is an optimal surfactant.

Betaine surfactants OBS-50 Octadecyl Benzenesulfonic Acid CAS 27177-79-3插图

( surfactants in shampoos)

Amino acid surfactants

Made from a mix of coconut oil and amino acids, it is safe, mild, and non-irritating. The most essential point is that it is naturally weakly acidic and satisfies the pH needs of healthy skin and hair. It is the excellent surfactant in baby shampoo. They are “cocoyl glycine,” “cocoyl glutamate disodium,” and so on

From the viewpoint of chemical residential or commercial properties, its pH worth is in between 5.5 and 6.5, which is weakly acidic and near the pH worth of human skin. Thus, it is gentle and skin-friendly and appropriate for all hair kinds; amino acid surfactants are zwitterionic and easily soluble in water. It is easy to rinse tidy.

But it additionally has limitations. Amino acid surfactants are a number of to loads of times a lot more costly than common surfactants, and a lot of are shampoos specifically made for babies and young kids. The drawbacks of amino acid surfactants are that they are not rich in foam and have weak purification capacity.

The sensation of solidification and turbidity of surfactants in winter months is generally because of the low temperature level triggering several of its components to take shape or precipitate.

Betaine surfactants OBS-50 Octadecyl Benzenesulfonic Acid CAS 27177-79-3插图1

(surfactants in shampoos)

Suppose surfactant solidifies and becomes turbid in wintertime?

This is a physical phenomenon and does not have a significant impact on the efficiency of surfactants. In order to solve this issue, the following methods can be taken:

1. Enhance the temperature level: Put the surfactant in a warm setting or boost its temperature level by home heating to ensure that the crystallized or sped up components will slowly dissolve and the surfactant will go back to a clear state. However, it ought to be kept in mind that the temperature ought to be stayed clear of when warming to stay clear of affecting the surfactant’s performance.

2. Stirring: For surfactants that have strengthened or come to be turbid, they can be restored to a consistent state by stirring. Mixing can help crystallized or sped up ingredients redisperse into the fluid and boost surfactant quality.

3. Add solvent: Sometimes, a proper amount of solvent can be added to thin down the surfactant, therefore improving its coagulation and turbidity. Nonetheless, the included solvent need to be compatible with the surfactant and must not influence its usage result.

Supplier of Surfactant

TRUNNANO is a supplier of surfactant with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high-quality OBS-50 Octadecyl Benzenesulfonic Acid CAS 27177-79-3, please feel free to contact us and send an inquiry.


Inquiry us


    A detailed introduction to surfactants

    What are surfactants, and how do they work?

    Surfactants belong to a class that reduces surface tension. Surfactants are a class of compounds that reduce the surface tension of a liquid. They can be absorbed on interfaces such as gas-liquids or liquid-liquids. Surfactants can be found in many fields including industry, agriculture and medicine. They also play a role in energy production, environmental protection, and textiles.

    What is the structure of surfactants in their basic form?

    The basics Structure of surfactants The hydrophilic groups and the hydrophobic ones are different. Hydrophilic group are usually polar, like sulfate or carboxyl groups. These groups can interact with the water molecules. Hydrophobic hydrocarbon chains, like alkyls, aryls and lipids, are long nonpolar chains. By embedding this hydrophilic-hydrophobic structure into the interface, surfactants can reduce interfacial tension and make liquid surfaces easier to wet.

    Types of Surfactants

    The different types of surfactants can be classified according to their charge and molecular properties. According to their molecular structures, they are divided into straight-chain, branched-chain, fluorine containing, and nonfluorine containing surfactants. Depending on the type of charge, the surfactants can be classified as cationics, anionics, or nonionics.

    Synthesis Methods for Surfactants

    The main synthesis methods for surfactants include the modified synthesis technique and the direct method. The direct synthesis method is used to connect hydrophilic and non-hydrophilic groups directly. This allows the control of the molecular structures and properties through the adjustment of reaction conditions and the raw material ratios. Modified synthesis is the introduction of new groups in the molecular structures or modification of existing groups. This results in surfactants having specific properties and functions.

    Characteristics and uses of surfactants

    Surfactants, a group of compounds with a wide range of applications, have the following features:

    Special molecular structures:

    The molecular structures of surfactants consist of two parts, hydrophilic and Hydrophobic groups. The hydrophilic group interacts with water molecules, whereas the hydrophobic can interact organic molecules. The special molecular structures of surfactants allow them to reduce the surface tension and change the surface properties.

    High adsorption capability:

    Surfactants have the ability to adsorb strongly on the liquid-liquid, or gas-liquid interfaces. They can thus change the nature and function of the interface. Surfactants can reduce the interfacial friction by adsorbing on the interface.

    Orientation:

    Surfactants have the ability to automatically align themselves so that hydrophobic groups face inwards and hydrophilic ones face outwards at the liquid interface. The surfactant is able to reduce interfacial friction by using this orientation.

    Surface Tension:

    Surfactants reduce surface tension, making liquid surfaces more wettable and permeable. The ability to reduce the surface tension of a liquid gives surfactants an extensive range of applications, including detergents and pesticides. They can also be used in cosmetics, oil, textiles, food products, coatings and other industries.

    Wetting and Penetration

    Surfactants improve the wetting and penetration properties of liquids. This wetting effect and penetration gives surfactants an extensive range of applications, including detergents and pesticides.

    Foaming action

    Surfactants that produce foam can have a foam-stabilizing action. This foam effect can be used in a variety of fields including detergents and personal care products.

    Chemical Stability

    Most surfactants exhibit good chemical stability in conventional conditions. They are also difficult to decompose. The chemical stability of surfactants makes them suitable for long-term application in many different fields.

    They have unique properties and molecular structures that are important in many areas. They can reduce the surface tension and change the surface properties in liquids. They can also improve wetting and penetration abilities of liquids. This makes surfactants a very important component in industrial and everyday products.

    Applications of surfactants

    Surfactants, a class compound with many important applications, are used in a large number of different fields. Surfactants have many important applications. Their unique molecular properties and structure make them important in a wide range of fields. Surfactants’ types and uses will expand as science and technology progress and society develops. Green surfactants are also becoming increasingly popular as environmental awareness improves and people strive to live a healthier life. Surfactants are used in a variety of applications.

    Surfactants are essential in detergents. They can be used to clean, as emulsifiers, or as wetting agents. Surfactants can reduce the surface of the liquid and make it easier for detergents to penetrate into the stain. Surfactants can form foam at the same time. This makes it easier to remove the detergent.

    Pesticides: Surfactants in pesticides can be used to improve adhesion, penetration, and efficacy by acting as dispersing, wetting, or penetrating agents. Surfactants can be used to reduce tension, increase penetration and wetting of pesticides onto the plant’s surface and create a protective coating that reduces evaporation.

    Oil industry: Surfactants in the oil industry can be used to reduce viscosity of thick oils, separate oil from water, and more. They can change oil-water interface. They can promote oil-water seperation and change the nature and structure of the interface.

    Surfactants have many uses in the fields of textiles and coatings. These agents can be used to improve the surface properties and wetting of textiles or coatings. They can improve the softness of textiles and reduce the surface tension in coatings.

    Surfactants are commonly used in personal care products such as detergents and skin care products. They can clean effectively the mouth and skin while also improving softness, skin friendliness, and relieving symptoms of irritation and allergies during shaving.

    Food: Surfactants in food can be used for emulsifiers or stabilizers. They can increase the nutritional value as well as improve the taste and consistency of foods. As an example, surfactants are added to frozen food such as ice-cream to improve its taste and stability.

    Pharmaceuticals: Surfactants have many uses in the pharmaceutical sector, including as drug carriers and drug synergists. They can enhance the bioavailability, efficacy, and reduce the negative effects of drugs.

    Environmental protection: Surfactants may be used to treat water, clean surfaces, and more. They can reduce surface tension in water, improve intermixing, emulsification and water removal of harmful substances and odors.

    Energy: In energy, surfactants may be used to improve fuel efficiency and performance. They can enhance the combustion efficiency of fuels and reduce fuel consumption.

    Surfactants can be used in many different fields. Surfactants have many different applications and can change product performance or quality. Surfactants have a wide range of applications, including detergents, pesticides, paints, textiles, personal health care, food, medicine, environmental protection, energy and many other fields. Surfactants’ application will expand as science and technology continue to progress and society continues to develop.

    Applications of surfactants

    Surfactants, a class compound with many important applications, are used in many different fields. Surfactants have many important applications. Their unique molecular properties and structure make them important in many different fields. Surfactants’ types and uses will expand as science and technology progress and society develops. Green surfactants are also becoming increasingly popular as environmental awareness improves and people strive to live a healthy life. Surfactants are used in a variety of applications.

    Detergents Surfactants can be used to clean, emulsify, moisten, etc. They can reduce the liquid’s surface tension, allowing the detergent to penetrate deeper into the stain. Surfactants can form foam at the same time. This makes it easier for detergents to be washed away and reduces residue.

    Pesticides: Surfactants may be used to wet, disperse, penetrate, or otherwise modify pesticides. They can improve the adhesion of pesticides and their penetration into the plant, improving their efficacy. They can reduce the tension of the plant’s surface and promote wetting, penetration and the decomposition of the pesticides.

    Oil industry: Surfactants in the oil industry can be used to reduce viscosity of thick oils, separate oil from water, and more. They can change oil-water interface. They can change oil-water interaction and promote separation of oil from water, as well as wetting oil surface and reducing viscosity and fluidity.

    Surfactants in Coatings and Textiles: They can be used to improve the surface properties of textiles and coatings. Improve the surface properties of textiles and coatings. They can be used to reduce the surface tension, improve wetting, leveling and the skin-friendliness in textiles.

    Personal Care: Surfactants are found in many personal care products such as detergents and skin care products. They can clean effectively the mouth and skin, as well as improve the softness of the skin.

    Food: Surfactants in food can be used for emulsifiers or stabilizers. They can increase the nutritional value as well as improve the taste of foods. As an example, surfactants are added as emulsifiers in frozen foods such a ice-cream to improve taste and stability.

    Pharmaceuticals: Surfactants have many uses in the pharmaceutical sector, including as drug synergists or carriers. They can enhance the bioavailability, efficacy, and reduce the negative effects of drugs.

    Surfactants have many uses in environmental protection. They can be used to treat water, clean surfaces, and more. They can reduce surface tension in water, improve intermixing, emulsification and remove odors and harmful substances.

    Energy: Surfactants may be used to improve fuel efficiency, reduce emissions and increase combustion performance. They can enhance the combustion efficiency and performance of fuels as well as reduce fuel consumption and harmful emission.

    Surfactants can be used in many different fields. They can perform different functions depending on the field, affecting both performance and product quality. Surfactants have a wide range of applications, including detergents, pesticides, paints and textiles. They are also used in the pharmaceutical industry, food, medicine, environmental protection, energy, and many other fields. Surfactants’ scope of use will expand as science, technology, and society continue to progress.

    Surfactants Suppliers High Quality and Quantity

    Mis-asia has been a leader in the supply of advanced materials for many years. We offer a large range of chemicals and surfactants. We can also provide anionic and nonionic detergents, as well as amphoteric and cationic detergents. Click the desired product or email us at brad@ihpa.net to send your inquiry. You will receive a reply within 48 hours. 24hours.