About Lithium Battery Anode Material Few Layer Graphene:
What is few layer graphene? The few graphene layers are made up of ultra-thin layers of carbon atoms arranged in a hexagonal honeycomb lattice. Graphene films produced by chemical vapor deposition (CVD) are polycrystalline in nature, with multiple small graphene domains growing and merging into a continuous film.
Compared to single-layer graphene material, fewer layers have the potential to develop into materials or heterostructures — by inserting different substances into their layered structures. Low-layer graphene inherits the original crystal structure and properties of natural flake graphite. It has a very large shape ratio (diameter/thickness ratio) with excellent electrical, thermal and mechanical properties. It has excellent conductivity, lubrication, corrosion resistance, high-temperature resistance and so on. Small layers of graphene have a specific surface of 400 ~ 700㎡/g and a thickness of 0.55 ~ 3.74nm.
Graphene has a high specific surface. Easy and other materials such as polymer material uniform composite, and form a good composite interface. The company’s low-layer graphene products have formed large-scale industrial production capacity.
As an excellent basic material for the preparation of functional composites on an industrial scale, graphene with fewer layers will play an important role in the new round of the industrial revolution. Graphite flakes attached to inorganic nanoparticles can not only effectively prevent them from repeatedly stacking during chemical reduction.
In addition, it can also promote the formation of a new class of materials based on graphene as a carrier. Graphene-inorganic nanocomposites show excellent performance, which can be widely used in emission displays, sensors, supercapacitors, batteries, catalysis and other fields, which can significantly improve the performance of nanomaterials. This enables the extensive industrial application of the most promising materials in nanotechnology. RBOSCHCO is a trusted global Lithium Battery Anode Material Few Layer Graphene supplier, nitrogen doped graphene. Feel free to send an inquiry about the latest price of Few Layer Graphene at any time.
If you want to know graphene price/graphene cost, please send inquiry to sales1@rboschco.com
Performance of Anode Material Few Layer Graphene CAS 1034343-98-0 :
Few layer graphene ( CAS 1034343-98-0 ) is a two-dimensional carbon nanomaterial composed of carbon atoms and sp² mixed orbital hexagonal honeycomb lattice. Few layer graphene is one of the highest-strength materials known, but also has good toughness, and can be bent.
Technical Parameter of Anode Material Few Layer Graphene CAS 1034343-98-0 :
Product Name | CAS | Purity | SSA | Carbon atomic layers | Other Impurity
( ppm ) |
Few Layer Graphene | 1034343-98-0 | 99% | ≥350 m2/g | 2-5 | <1000 |
How is Lithium Battery Anode Material Few Layer Graphene Produced?
Synthesize fewer layers of graphene
First, a chemical vapor deposition (CVD) method was used to directly grow high-quality graphene films on copper foil. The film is then transferred to the desired substrate by a wet-chemical graphene transfer process.
Applications of Lithium Battery Anode Material Few Layer Graphene:
With a unique combination of novel electronic, optical and mechanical properties, graphene-based nanomaterials have found applications in energy generation and storage. For example, they are used in photovoltaic devices and batteries, sensors and flexible electronics, photodetectors and biomedical applications (such as drug delivery, biological imaging and tissue engineering).
Low-layer graphene has great value in energy applications, including hydrogen storage, natural gas storage, supercapacitors and lithium batteries.
The single-layer/low-layer graphene with few structural defects is the most widely used cathode material for commercial lithium-ion batteries. However, graphene with few layers rich in defects is the main electrode material for supercapacitors.
In supercapacitor application, few layers of graphene larger specific surface area are conducive to the high dispersion of nanoparticles, excellent electrical conductivity is beneficial to in the process of electrochemical electron transfer from nanoparticles to graphene substrate, which can effectively restrain the supercapacitor occurs due to reunite in the process of the electrochemical cycle of passive film phenomenon, improve the electrode material cycle performance.
Using graphene instead of the traditional graphite material will greatly improve the lithium storage capacity of the anode, and thus improve the energy density of the lithium-ion battery.
In addition, when graphene is used as the anode material of lithium-ion batteries, the diffusion path of lithium ions in graphene material is relatively short and the electrical conductivity is high, which can greatly improve its rate performance.
In terms of hydrogen storage, when some atoms (such as transition metal and alkali metal) are first adsorbed on the surface of graphene with few layers, charge transfer occurs between the adsorbed additional atoms and the substrate, which changes the local charge density, thus greatly increasing the adsorption capacity of graphene to hydrogen.
Storage Condition of Anode Material Few Layer Graphene CAS 1034343-98-0 :
The damp reunion will affect few layer graphene dispersion performances and using effects, therefore, the product should be sealed in vacuum packing and stored in a cool and dry room, the few layer graphene can not be exposure to air. In addition, the few layer graphene should be avoided under stress.
Packing & Shipping of Anode Material Few Layer Graphene CAS 1034343-98-0 :
We have many different kinds of packing which depend on the few layer graphene quantity.
Few layer graphene packing: 50g/bag or 100g/bag, 500g/bag, or as your request.
Few layer graphene shipping: could be shipped out by sea, by air, by express as soon as possible once payment receipt.
Graphene Powder Properties |
Other Names | Graphene nanopowder, 2D carbon, monolayer graphene,
bilayer graphene, graphene nanosheets, graphene nanoribbons,
graphene nanoplatelet |
CAS No. | 1034343-98-0 |
Compound Formula | C |
Molecular Weight | 12.01 |
Appearance | Black Powder |
Melting Point | 3652-3697℃ |
Boiling Point | 4200℃ |
Density | 2.267 g/cm3 |
Solubility in H2O | N/A |
Thermal Expansion | N/A |
| |
| |
Graphene Powder Health & Safety Information |
Signal Word | N/A |
Hazard Statements | N/A |
Hazard Codes | N/A |
Risk Codes | N/A |
Safety Statements | N/A |
Transport Information | N/A |
Inquiry us