The Properties And Application of Single-layer graphene

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email:

What is a single-layer Graphene?
Single-layer Graphene is a two-dimensional honeycomb graphite made of one layer of carbon. The sp2 bond between each carbon makes it the world’s thinnest, but stiffest material (the fracture resistance is approximately 200 times higher than steel). It is nearly completely transparent and absorbs only 2.3% light. The thermal conductivity of this material is up to 5300 W/m. The K value is higher than that of carbon nanotubes or diamond. The resistivity is about 0.96×10-6 and is smaller than copper or silver. Graphene also has a high specific surface area (2630 m2/g). The graphene’s novel feature is that, in the absence doping, it is the Fermi levels located at the junction of the conduction band with the valence. At this point the electron’s mass is zero. The carrier then appears as a Dirac. Fermions can have excellent carrier conductivity and carry current densities of up to 200,000 cm2/V. In the absence carrier transmission, graphene is still conductive s=e2/h. Its Hall effect at room temperature expands its original temperature range ten-fold. This shows unique carrier characteristics as well as excellent electrical qualities. The unique electronic properties of graphene make it possible to confirm relativistic quantum-electrodynamic effects, which are hard to observe with particle physics.
The Application of Single-layer Graphene

Graphene, the most suitable material for creating nanoelectronics devices. The devices made from it are smaller and consume less power. They also transmit electrons more quickly. Graphene is a good material for high-frequency transistors. The graphene is stable even with just one hexagonal circle at the nanometer-scale, and this is very important for developing molecular electronic devices. Single-electronic components prepared by electron beam printing and etching technology may break through the limits of traditional electronic technology, and have excellent application prospects in the fields of complementary metal-oxide-semiconductor (CMOS) technology, memory, and sensors, and are expected to be the development of ultra-high-speed computer chips. The medical industry will also benefit greatly from this breakthrough.

Graphene films with a single layer can also be made into microscopic filters to decompose gasses. This thin film can be used in medical research to observe and analyze molecules using electron microscopes. It is a great tool for medical technology development. Graphene is able to detect gases with an external noise and accurately identify individual molecules. This could have applications in chemical probes and molecular sensors.

Single-layer Graphene is widely used as a semiconductor electronic package due to its excellent properties in terms of electrical, mechanical, and thermal properties.

Tech Co., Ltd. () has over 12 years’ experience in research and development of chemical products. Contact us to send an inquiry if you are interested in high-quality Single-layer Graphene.